Environmental News

UViLux tryptophan fluorometer used to carry out rapid analysis in Cholera outbreak mapping project

In the 2017/2018 rainy season, Zambia suffered another major outbreak of Cholera. In response to this, the German Federal Institute for Geosciences (BGR) under the Groundwater Resource Support Programme (GReSP) were asked to work in collaboration with the Zambian Water Resource Management Agency (WARMA) to investigate the Cholera outbreak with a greater emphasis on understanding the groundwater pathways.

“The Chelsea UViLux tryptophan fluorometer and Hawk handheld display and logger were used to carry out rapid analysis of a variety of water sources from the Cholera hotspots in Lusaka,” reports Max Karen, Senior Hydrogeologist with the GReSP project.

The project has now identified multiple pathways and water sources within the informal settlements where faecal contamination is present in water supplies and is being used to develop and validate methods to reduce the risk of future epidemics.

The UViLux fluorometer will now be transferred to WARMA where is will be used to screen water quality from the thousands of boreholes which have recently been registered. "The great advantage of the UViLux is that it does not need consumables or time to incubate and analyse results," concluded Max Karen.

For more information please contact: 

For more information please contact: Justin Dunning, Sales Manager, Tel: +44(0)20 8481 9031
Justin Dunning, Sales & Marketing Manager
Mobile: +44(0)7773 849 526
Tel: +44(0)20 8481 9031

Media contact: For more information please contact Ellen Keegan, Tel: +44(0) 208 481 9019.

CTG's field-based tryptophan sensor maps drinking water quality in Africa, article by Dan Lapworth, British Geological Survey for World Water

The advantages of using the tryptophan sensor
The advantage of the UViLux tryptophan sensor is that it is quick, reagentless and cheap, so it can enable rapid surveys of dozens of wells and boreholes across the town which  is impractical to achieve with traditional thermo-tolerant coliforms testing. Furthermore, the generally low turbidity and constant temperature of groundwater ensures that the uncertainty in the sensors values is greatly reduced when compared to applications in surface waters.

In Africa where data scarcity and institutional capacity is a massive issue, this technique could provide a step-change in the ability to gather water quality data at a much higher spatial and temporal resolution. It has the potential to be used as a tool alongside conventional counting techniques to monitor interventions and water point failures and interventions to improve source protection.

Contact Us:

55 Central Avenue
West Molesey

Tel: +44 (0)20 8481 9000
Fax: +44 (0)20 8941 9319

Join our mailing list